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The provision of authentic applications, as distinct from artificial word problems, as
vehicles for teaching students to apply their mathematics remains an unfulfilled need. This
paper describes the generation and application of a framework that provides principles to
inform such a purpose. The framework is grounded in classroom data produced by students
solving modelling problems, and its use is illustrated through application to the design of
a new problem. The development and application of the framework are on-going.

It is now more than thirty years since Henry Pollak (Pollak, 1969) challenged the

mathematics education community to seriously engage with applications and mathematical

modelling. Since that time some positive achievements (including in some Australian

states), have been tempered by the knowledge that many challenges remain unfulfilled, or

have been abandoned or emasculated. Large-scale initiatives such as the OECD Programme

for International Student Assessment (PISA) have included items with applications and

modelling content in its bank of items (Turner, 2004). An interesting range of application

skills are sampled by the items, including the need to make assumptions, choose a

mathematical approach, and interpret outcomes. The nature of the testing does not provide

for extended modelling work, but student capacity to succeed on such items is indicative of

modelling related skills, and it is interesting to note that the omission rates for such

questions has been generally very high across countries, pointing to deficits in the

confidence, as well as competence, with which students approach contextualised problems.

If improvements in performance in the abilities that such measures aim to identify are to be

achieved, these will be consequences of successful programs developed within classrooms.

The potential context within which applications and modelling occurs is enormous, when

one considers the relevance of mathematical activity to other discipline areas. Because the

latter require also specific knowledge of specialist areas outside mathematics, the focus here

is limited to situations that occur in the ‘real life’ of students. Given this, the overall

purpose is to enable students to acquire skills for accessing their ‘pure’ mathematical

knowledge in addressing problems relevant to their world, and more importantly to focus

on how this can be successfully achieved.

The field itself occupies a distinctive space within mathematical education, for it

represents a meeting place for mathematicians with a deep interest and involvement in

educational issues, and teachers and educators committed to promoting excellence in

mathematics for purposes other than performing on traditional coursework and examination

tasks. As such, applications and mathematical modelling has a home at all levels of

education (Elementary, Secondary, Tertiary) to which we should add Teacher Education.

Periodically papers have surveyed the situation within the global field, endeavouring to

paint a current picture of the state of play (e.g. Blum & Niss, 1991; Blum, Galbraith, Henn

& Niss, 2006); Niss 2001). The recent book (Lesh & Doerr, 2003) provides by virtue of its

content a similar service, from a mainly north American perspective. ICMI Study 14 (Blum

et al., 2002) indicates the continuing significance of the topic at international level.
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The more things change…

In revisiting historical roots we note that Pollak asked, not what commonly available

word problems could achieve in terms of their contribution to curricular mathematics, but

what they contributed to the capacity of students to apply their mathematics to problems

outside the classroom, and what messages they conveyed about the nature of applications

of mathematics. He concluded that they were almost all pseudo-problems, not really

concerned with genuine applications, and involving skills far removed from those necessary

to address problems based in the world outside the classroom. With this in mind, here is an

example of a word problem taken from a contemporary source, circa 2004.

Example A: A take-away food shop sells hamburgers, sausages, and pizzas. On one day the number of
hamburgers sold was three times the number of pizzas, and the number of sausages sold was five times the
number of pizzas. The number of hamburgers and pizzas sold was in total 176. How many of each type of
food was sold?

While this problem is couched in the language of the real world there is no sense in

which it represents how a vendor would make decisions essential to her/his livelihood - it

does not show how mathematics is applied to enhance decision-making associated with real

problems. The point here is that, despite all that has happened in the interim, this very

issue (and problem type), a major motivation behind the article by Pollak more than 30

years ago, remains an issue today. As was stated then, such word problems have value in

curricula and we can learn from advances made in the understanding of how students cope

with them — but not in terms of applied mathematics. If they are to play an enabling role

in helping students to apply their mathematics to real problems, it is essential to clarify

those additional or different features that characterise examples that genuinely involve

applications and modelling. Here is another word problem posing as an “application” taken

from a contemporary curriculum source. It belongs to a family of problems classified as

“whimsical” by Pollak, which he noted were greatly loved and probably did a lot of good

— but not as applied mathematics.

Example B: Two meatballs roll off of a pile of spaghetti and roll toward the edge of the table.
One meatball is rolling at 1.2 m/s and the other at 0.8 m/s. They fall off the table and land on a $5000
Isfahan carpet. If the table is 1.2 m high, how far apart from each other do the meatballs land?

This scarcely requires comment in terms of real problem content — for example how

many “impossibilities” are embedded in the wording? Within the contemporary scene it

would seem fair to say that word problems continue to be widely construed as close

relatives of application and modelling problems, with links made on the basis of semantic

content, given that both word problems and modelling problems are couched in verbal

clothes. In other ways however, as we have seen, the two usually differ markedly,

specifically with respect to meaningfulness. Fortunately there are contemporary voices

that continue to call for the use of more authentic problems.

…the use of conditions that often make out-of-school learning more effective can and must be re-
created, at least partially, in classroom activities. Indeed while there may be some inherent
differences between the two contexts these can be reduced by creating classroom situations that
promote learning processes closer to those arising from out-of-school mathematics practices.
(Bonotto, 2006)

Problem Context

Palm (2006) points out that many (or most) real world examples used in education
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cannot be exact matches with external counterparts, so we now proceed to look at

problems that represent, to a reasonable degree, genuine real-world activity — and how

these can be sensibly represented in school-based applications. The subsequent emphasis

in this paper is on student performance and problem design, and it addresses the following

purposes:

1. Examining student performance on modelling problems to identify structural

components with generic properties;

2. Using resulting insights to develop a framework for task design.

The following example, one of several real-world problems given in the course of a two-

year program, provides material for subsequent analysis. The discussion below includes

data illustrating how some students solved the given problem. Student comments, extracted

from extended modelling reports, are shown in boxes, with essential steps undertaken by

the students summarised in normal type. The context was a senior secondary college in

which mathematical modelling formed a structured component of the year 11–12

mathematics course, for students bound for science or engineering at university.

Spacing Speed Bumps

This problem took advantage of the construction of a new entrance road to the college,

which occurred while the students were undertaking their mathematics course. The entrance

road diverged from a roundabout in the main road outside the college gate and extended to

another roundabout by the administration block that fed into student and staff car parks.

Speed bumps were to be placed along the stretch of road to control speeds within the

college grounds.

The Problem

Students were given the problem of siting the speed bumps and required to provide a

detailed report supporting their recommendations. (This was the level of generality with

which the problem was set — no mathematical background was provided.)

1. Definition of the mathematical problem: Given only the general instruction above,

one student group specified the problem as follows.

To position speed bumps on the college’s entrance road to keep speeds to a maximum of 30km/h and above
all to keep safety to a maximum for students. For this purpose the entrance road has been defined as the road
from the roundabout at the front of the college to just before the roundabout by the administration block
(approximately 255 metres).

2. Initial factors identified by students: Maximum speed allowed between bumps; Total

length of entrance road; Maximum speed over bumps; Danger areas.

The students used various means to obtain information deemed to be necessary for the

project. The maximum speed was taken to be the speed limit within the college grounds,

the length of entrance road was measured to have the value given in the problem

specification, and the maximum speed over bumps was obtained from documentation of the

type of bump to be used (designed to provide for a maximum speed of 8 km/h over the

bump). Danger areas were identified as locations specific to the problem in terms of the

college environment.
The danger areas along the college’s entry road are areas where speed bumps cannot be put due to safety
reasons. There are four such areas.
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‘Danger areas’ was a concept initiated by the students, and identified as the entrance to

the college, a drain located 140 metres from the entrance that was deemed subject to

cracking if subjected to extra stress, an area leading off the main roadway to car parks, and

an area near bicycle parking bays where it was felt students should not be caused to swerve

to avoid a speed bump. (Having initiated these considerations, decisions were made by the

students following an examination of campus maps).

3. Finding location of first speed bump: The students set out to break the problem into

successive parts associated with the respective bumps. If assumptions were needed these

were addressed within specific calculations, rather than attempting to identify a global set

of assumptions for the complete problem. For the first bump it was assumed that cars

leaving the roundabout to go through the college gate would be travelling at about 30km/h.

Finding the time for an average car to slow down from 30 km/h to 8 km/h is found by going into the real
world and taking an average car and doing a series of tests

The students provided a table from their (sedate) experiments using one of their own

cars, which gave an average value of approximately 5.5 sec — cautious driving indeed!

They then assumed motion would be rectilinear and used the formula d = (vi + vf)t/2 to

estimate d as 29m from the front gate on the entrance road.

4. Finding location of second speed bump:

When finding the position of the second bump two processes have to be done. The first process is the
accelerating from 8 km/h just as the car gets over the speed bump, to when the car is at maximum speed
through the college, which is 30 km/h. The second process is the slowing down of the car from 30 km/h to
8 km/h where the next speed bump is…The car will be getting to a maximum of 30 km/h, then the driver
will see the next bump and start to slow down…Finding the time for an average car to accelerate from 8
km/h to 30 km/h is found by again going into the real world and doing some tests with an average car.

The students again provided some test results in a table showing an average time of

approximately 7.5 sec. (It was interesting that they did not assume a symmetrical result to

the braking situation considered earlier). Again using d = (vi + vf)t/2 a value of

approximately 39 m was calculated, and slowing was assumed to start immediately. The

“slowing distance” was shown to be the same as that for the first bump (29m) so an

estimated distance between bumps of 68m was inferred.

5. Finding the location of third and fourth bumps: These mirrored calculations for the

second speed bump

6. Refinements and recommendations:

This step involves going back to the real world and seeing if the results of the maths fits the road and
dodges the danger areas.
Testing the first speed bump to see if 29 m from the front gate misses the danger areas and indeed it
does…(similar for bumps 2 and 3)… However, the last speed bump lies on the fourth danger area. A suitable
method of getting this speed bump out of the danger area is to move it forward 7 metres.

The implication that 4 bumps are consistent with a 255m stretch of roadway was

implicit in the approach, but did not feature explicitly in the students’ testing of the

solution obtained. What might also have been done here was to consider several acceleration

and braking rates, to test the sensitivity of the suggested locations to a range of driving

behaviours.

7. Testing the speed bump results: Two possible refinements were suggested: more

severe speed bumps to decrease the minimum driving speed over the bumps, and
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incorporation of the car park in the analysis, which would require additional bumps.

It will be clear that the problem solving process undertaken by the students contained

features different from conventional approaches to teaching and learning in mathematics

classrooms. Foremost among these was the interplay between mathematics and a problem

context that was external to the classroom. This occurred for example through the seeking

out of documentation enabling the intended maximum speed over a bump to be estimated,

consultation of college maps, and most particularly experiments on acceleration and braking

conducted using a student’s car in a roadway. Most importantly, these actions were

initiated by the students themselves. Additionally much of the modelling took place

outside formal school hours, again initiated by the students through arranged meetings.

From Problem Solution to Design Principles

In this section some principles are articulated and illustrated based on data from the

speed bumps problem (Table 1). See discussion below Table.

Table 1

Structure of Speed Bumps Solution

Principle Enactment in solution to speed bumps problem

Principle 1: There is some genuine link with
the real world of the students.

The proposed problem directly affected the students, and
was located in their college.

Principle 2: There is opportunityto identify
and specify mathematically tractable
questions from a general problem statement.

This was demonstrated by the definition of the
mathematical problem as written by the students.

Principle 3: Formulation of a solution
process is feasible, involving the use of
mathematics available to students, the making
of necessary assumptions, and the assembly
of necessary data.

*The students identified what they called initial factors,
and set up a solution process that assumed equations of
rectilinear motion. Data required in the solution process
were obtained by consulting documentation, and by
doing some trials with cars under road conditions.

Principle 4: Solution of the mathematics for
the basic problem is possible for the students,
together with interpretation.

*The students solved the basic problem for each speed
bump in turn using appropriate assumptions (not always
made specific), and interpreted the results appropriately.

Principle 5: An evaluation procedure is
available that enables checking for
mathematical accuracy, and for the
appropriateness of the solution with respect
to the contextual setting.

The mathematics is easily checked, and the students
tested and adjusted their recommendations in terms of
the danger areas they had identified.

Didactical principle: The problem may be
structured into sequential questions that
retain the integrity of the real situation.
(These may be given as occasional hints at the
discretion of a teacher, or used to provide
organised assistance by scaffolding a line of
investigation.)

Sample questions for speed bump problem:

• What speeds are important to consider in deciding the
location of bumps?

•  What do you need to know in order to go about
calculations for the first bump?

• How is the situation between bumps different from
that leading to the first bump?

•How can you check whether your recommendations are
reasonable?

* It will usually be the case that some students will be unsuccessful. It is important to

remember that these are principles for problem design not necessarily for individual student

success, and that the latter require a different set of criteria.

It would be audacious in the extreme for any individual to claim to hold a definitive

position with respect to structuring mathematical modelling problems, and this is certainly
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not the case here. However it is important to analyse and distil qualities that can be

identified in problems that have proved successful, and to use such information in the

design and testing of new problems, and indeed in the search for design principles. These

principles (see Table 1) emerged, as student responses to a range of problems were viewed

in the light of theoretical needs for a problem to be considered authentic. An application of

these principles follows below, to illustrate key elements in the design of a modelling

problem from a new situation. Such an enterprise is best viewed as work in progress, rather

than as definitive, and can be seen as a contribution towards the development of a

theoretically consistent approach to problem construction. It is desirable that principles

should embody essentials, encompass the data, be theoretically consistent, and for practical

purposes be limited in number - from these perspectives and that of the data, five were

selected. In addition to these mathematical principles, one pedagogical principle has been

added. (While a number of pedagogical principles will typically be used in teaching, this

one is directed particularly towards the design issue).

Application to Task Design: EAN-13 Barcodes

Having developed principles based on student solutions as reference data, we now test

these principles by application to the design of a new problem. In practice the principles

are not applied sequentially but together form a working basis that is used to develop,

critique, and refine an idea into a modelling problem. The example below has been designed

for a current Australian initiative, for which student outcome data are not yet available.

 The Problem Context

The purpose of barcodes is to enable instantaneous processing of information by

computers, and their use in our society is now almost universal. Australia uses the

European Article Numbering Code containing 13 digits (EAN-13), which is one of the most

commonly used systems worldwide (Figure 1).

 Figure 1. A sample barcode

The following codes have been taken from Supermarket labels.

930060112804 4 (tomato sauce)

930060118014 1 (iodised salt)

The left-most digit (zeroth digit shown as separated from the rest on labels) together

with the next digit indicates the country of manufacture (e.g. 93 represents Australia and 94

represents New Zealand.)

The next five digits identify the manufacturer (these are both Farmland products)

The following five digits identify the particular product (tomato sauce and iodised salt).

The final number is a check digit. When the label is scanned, the barcode identifies the

item, for which the price is stored in the retailer’s database - the computer verifies that the
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check digit is correct before processing the number. If an error is detected the computer

indicates accordingly. This can happen, for example, if a paper label on a can is damaged so

that a digit is misread. A checkout attendant will then enter the barcode by hand, and this

procedure is of course also subject to error.

The check digit works as follows. Using the first 12 digits in the code, the check digit

satisfies the condition that:

3x(1st + 3rd +…+ 11th digit) + 1x(0th + 2nd + 4th +…+ 10th digit) + check digit is divisible

by 10. (Here 3, and 1 are referred to as weights)

The Problem Statement

Two types of error that barcodes are designed to deal with are mechanical errors and human errors. A
mechanical error is caused for example by a machine misreading a digit on a damaged label. A human
operator is prone to two types of error: mistyping a single digit, and transposing the order of adjacent digits.
How effective is the barcode system in detecting such errors, and would other weights be as effective or
better?

Table 2:

Application of Design Principles to EAN-Codes Problem

Principle Enactment in design of EAN - 13 codes problem

Principle 1: There is some genuine link with
the real world of the students.

The context is a part of the everyday experience of all
students.

Principle 2: There is opportunity to identify
and specify mathematically tractable
questions from a general problem statement.

Suitable sub-questions are implied by the general
problem:
• What proportion of common errors will be detected by
the check digit?
• Is there a simpler set of weights that is as effective or
better for this purpose?

Principle 3: Formulation of a solution
process is feasible, involving the use of
mathematics available to students, the making
of necessary assumptions, and the assembly
of necessary data.

The sub-questions require basic strategies of proof, and
procedures that need only an understanding of integer
arithmetic, including simple notions of divisibility.
(Putting these together, as usual, increases the demand
compared with the demand that would apply for each
separately.)

Principle 4: Solution of the mathematics for
the basic problem is possible, together with
interpretation.

The solution of sub-questions can be addressed by
students, using existing knowledge resources — here the
successful completion of arithmetic procedures, and
associated logic, and interpretation.

Principle 5: An evaluation procedure is
available that enables checking for
mathematical accuracy, and for the
appropriateness of the solution with respect
to the contextual setting.

Checking of mathematical answers is a feasible part of
the procedure. Ideally the outcomes should also be tested
in their real-world setting. (Given the number of students
that have part-time jobs in commercial stores this is
certainly a realistic possibility.)

Didactical principle: The problem may be
structured into sequential questions that
retain the integrity of the real situation.
(These may be given as occasional hints at the
discretion of a teacher, or to provide organised
assistance by scaffolding a line of
investigation - often helpful at the challenging
specification stage in assisting applications of
Principle 2.)

Sample structuring questions (hints) for EAN codes
problem:

• Is the check digit unique?
• Which single digit errors will be detected by the coding
method?
• Which transposition errors will be detected by the
coding method?
• Will weights of 1 and 2 do as good a job as weights 1
and 3?

The context by itself provides nothing more than a potentially fruitful idea. The above

table indicates how the principles are embedded in the design of this EAN code problem.
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This is essential if the detail included in a problem statement is to provide a feasible

modelling exercise. As one illustration of the elaboration characterizing the application of

the various principles, an outline of single-error detection is given below.

Single error detection: If a digit ‘a’ is changed to ‘b’ the weighted sum will change by (b-a) if the weight is
1, or by 3(b-a) if the weight is 3 — noting the sign (direction) of the change does not matter. Errors will
only go undetected if these quantities are a multiple of 10: 0,10,20…
Now b-a = 0 requires b = a; and b-a = 10, 20. cannot be satisfied for unequal values of digits a and b that
range between 0 and 9.
Similarly 3(b-a) = 0 requires b = a. The next possibilities 3(b-a) = 10 or 20 do not give whole number
values for a and b, and 3(b-a) = 30 cannot be satisfied for unequal values of a, b in the range 0 to 9. Hence a
= b in all cases so the method gives a 100% detection rate.

Concluding Comment

The generation of problems presenting contexts for authentic applications of

mathematics remains a significant need. Given an appropriate context, the challenge

involves converting a fruitful idea into a suitably framed, accessible problem. For this

purpose, principles of design need to be theoretically sound and practically workable. This

paper has illustrated the creation and application of a design framework. The framework

has been structured by analysing qualities embedded in successful solutions to problems at

senior secondary level (illustrated by means of the speed bump problem). These properties

when generalised have provided a framework of structural principles. The application of

this framework in structuring a contextualised problem, so as to satisfy the associated

principles, has been illustrated. The framework itself should be regarded as a work in

progress, to be refined and improved through subsequent application and evaluation.
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